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These notes and diagrams show a very  high-level overview of a plausible architecture for  real-
time aspects of generic, brain-like sensory processing, including distributed active sensation and 
control.   Because I personally believe that we know far more about the generic mathematical  
constraints on sensory input, processing, and distributed computation than we do about neural 
micro-anatomy (hypercolumns, neurons, dendrites,  spines), this approach is explicitly non-
neural: it relies on what must  be true of brain processing, not on what we think we have 
measured.   

 

The basic idea :  many interconnected algorithmic modules, each of which (as in the first 
picture) should somehow perform the same core  functions across space and time:  compress, 
expand, predict, and control.   Exactly how each module does this is “left to the reader”;  an 
initial illustration (minus the de-reverb and control pieces) is outlined in the companion 
presentation “Generic Sensory Prediction,” but I’m sure many people could fill in the details 
much better.  

 

Each such “Compressor” module should be responsible for its own learning, resource 
management, and execution.  It accepts  inputs from its “south gateway”:  a routing interface 
which concatenates input from raw sensors and/or other modules and returns to them 
feedback both about predictions of future inputs and about demands or requests for modified 
future input. 

 

In effect,  except for a few control signals sent from each Compressor directly to 
muscles/actuators,  most  muscle-control signals are sent in the language of desired input  (“go 
to this point”) rather than in the language of actuators (“move this muscle”).   The core 
principle both for learning the muscles-to-state-space control mapping, and for using already-
learned inputs to maintain active control in real time, is that of optimal dithering:  inject just 
the right pseudo-random signals into the control stream so that reverse-correlated 
reconstruction  can distinguish input changes  caused by this module from changes caused by 
other modules or by the outside world.   In effect, dithering allows  each of many modules to 
“label” its  outputs by its own independent temporal variability,  so that it can identify and learn 
from their effects.  

 

Likewise, each Compressor digests the current best-estimate state-space location and trajectory 
into a minimal form (e.g.  {timestamp, state, direction} ), which can be distributed event-style 
from the North Gateway to other modules’ South Gateways for state-estimation at arbitrary 
points in the near future.   In this scheme each module knows about and operates only  on 10-
100 input dimensions at a time, and the Gateways have full responsibility for managing  direct 
inter-module connections and event-driven updates.  (Not yet shown, or even understood, is 
how each module knows which muscles to connect to….unfortunately,  muscles do not 
necessarily share the same grouping as the sensors they affect).  

Many such modules should be wired together hierarchically, as on the left side of the second 
diagram.  After learning, the topmost level should contain modules which operate on the 
most abstract, multi-sensory, long-time-scales possible, while the lowermost modules deal 
with near-term primary sensory input and effector output.  The bottom-most layer of the 
network could contain a predictive-comparator filter,  to maximize processing efficiency by 
removing  predictable,  redundant inputs (see Modeling Thalamus as a non-rectifying 
predictive comparator).  

 

The “output” of such a scheme not only includes specific, high-dimensional, high-bandwidth 
predictions of raw sensory signals (as proposed in my 1995 NIPS paper Unsupervised Pixel-
prediction,  in Jeff Hawkins’ 2004 book On Intelligence, and probably other places as well).  
That output also  implements active perception and control of the effectors associated with 
sensory input, like creating  head movements and saccades for visual input, balance and gait 
management for the feet, palpation for hands/lips/tongue, proprioceptive feedback from 
skeletal muscles (by dithering  muscle-tremors and/or muscle-fiber spikes), and perhaps even 
acoustic enhancement in the cochlea.    A strong prediction of this model is that active 
control should exist in every sensory modality possible, at the highest bandwidths possible. 

 

Each individual module on the left is born as a generic tabula-rasa, initially agnostic about 
both sensory modality  and level of abstraction.  But an actual brain, to survive in the world,  
requires at least a few hints about desirable inputs and situations, so it can know what to 
pursue or avoid.  Those hints come from two sources, one of them obscure.  The obvious, 
well-known reward/aversion inputs are themselves sensory inputs like pain, temperature, 
sugar, and such; those inputs drive a pre-determined suite of “cognitive/behavioral 
eigenstates,”  a shorthand for various preset resource- and processing-management 
strategies (e.g. “get food”, “explore”,  “hide,” “investigate”),  a concept  broadly similar to 
animal “moods” and “attitudes.”  Because these strategies are global and typically change 
slowly, they can be implemented by sending global  prioritization-signals to large numbers of 
Compressors in parallel, telling each how to do its job best in the moment.  

 

But many crucial situations are  not coded by specific pain/pleasure receptors,  and obviously 
cannot be coded at birth  by intermediate Compressors whose mappings haven’t yet even 
been learned.   The only other source for such assessments would be at the very topmost 
level of “trans-sensory statistics, ”  which would reflect global statistical answers to generic 
questions like “am I in control,” “is this desirable”, “is the situation improving,” or “am I safe.”   
Any such global “reward” signal would clearly complement the raw sensory rewards we 
already know about. 

 

This tentative outline—not yet even prototyped!—illustrates the integration of  several 
disparate tricks:  dimensionality reduction,  distributed processing, distributed control via 
optimal dithering, trans-sensory reward signals,  and learning to predict the future.   Because  
all these functions MUST be taking place in even small brains, we can focus on their simplest-
possible interactions before we add human-scale sophistication like episodic memory, 
strategy, language, and consciousness.  
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non-rectifying comparator RAW SENSORY RAW REWARD 
ache cold sweet hot hunger pain fatigue …. 

              TRANS-SENSORY STATISTICS  
Surprise   Familiar   Certain    Control      Danger  Needy      Real                  Success   …. 
Expected  Novel      Clueless   Helpless    Safe       Satisfied   Hypothetical   Failure     …. 
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