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Transmission of information is an important function of cortical neurons, so it
is conceivable that they have evolved to transmit information efficiently, with
low noise and high temporal precision. Such precision is consistent with the
output generated by various working models that mimick neuronal activity,
from simple integrate-and-fire models to elaborate numerical simulations
of realistic-looking neurons. But our current inability to match this data
with neurons’ detailed spike-generating mechanisms in vivo allows us a
wide latitude in interpreting the significance of the various components of
their spike code. One extreme hypothesis, the ‘simple’ model, is that each
neuron is noisy and slow, performing a simple computation and transmitting
a small amount of information. A competing hypothesis, the ‘efficient’ model,
postulates that a neuron transmits large amounts of information through
precise, complex, single-spike computations. Both hypotheses are broadly
consistent with the available data. The conflict may only be resolved with
the development of new measurement techniques that will allow one to
investigate directly the properties that make a neuron efficient — that is,
to be able to measure highly transient, localized events inside the thinnest
dendrites, which are currently experimentally inaccessible.
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Introduction

The spiking output of a single cortical neuron can be
directly measured, but the cellular properties that give
rise to the spikes are not well understood because these
neurons receive most of their synaptic input on dendritic
branches that are far too small for a recording electrode.
The best that can be done, at least in a living animal, is
to measure the membrane potentials as they reach their
gathering point in the much larger cell body — that is,
after they have been processed by the dendrites and per-
haps mixed with signals from other dendrites. Therefore,
in order to infer how the raw synaptic input helps fire or
inhibit the neuron, one must design a working model of
the neuron, for example, a numerical Hodgkin—Huxley
simulation that contains assumptions about the as-yet-
unmeasured properties of those thin dendrites.

Developing an accurate working model of a neuron’s
electrical dynamics is a crucial link in understanding
how neurons communicate. However, consensus eludes
us because so many questions remain unanswered. Do
neurons average their inputs, or instead fire upon coin-
cidences of synaptic events? Do they use noisy spike-rate
codes, or precise spike-time codes? Are they robust to

variations in the arrangement of synaptic activity on the
dendrites, or sensitive to it?

These questions bedevil a recent controversy among
modellers, which is to explain the irregular firing pat-
tern of single cortical neurons, the Gieger-counter-
like crackle so familiar to electrophysiologists. It turns
out that wildly different (yet equally ‘realistic’) work-
ing models can account for the observed spiking patterns
(output) of real in vivo cortical neurons.

This paper will critique one approach to the problem
and propose another. Because both proposals are consis-
tent with known physiology, and with insufficient ex-
perimental data to decide the issue, we must tease out
the assumptions behind them.

In a recent issue of this journal, Shadlen and Newsome
[1] made a masterful case for locating the genesis of fir-
ing irregularity in strong inhibitory currents (that would
balance a neuron’s excitatory drive), which they call ‘bal-
anced inhibition’. Their treatment of inhibitory synapses
in neocortex is far more informative and complete than
treatments found in competing models, including my
own. But they make one, seemingly minor assertion
about their simplified ‘balanced inhibition” cell model

Abbreviations
EPSP—excitatory postsynaptic potential; IPSP—inhibitory postsynaptic potential; NMDA—N-methyl-D-aspartate.
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Fig. 1. Analysis of sub-millisecond temporal sensitivity in Shadlen and Newsome’s balanced inhibition cortical cell model. (a) A sample trace
from a single compartment, leaky-integrator neuron, using roughly balanced amounts of random excitatory and inhibitory synaptic input.
Shadlen and Newsome [1] claim that such a simulation creates spikes whaose timing does nat reflect the timing of presynaptic events (see
Fig. 1c of [1]) (b) A cross-correlogram of all EPSPs and (c) IPSPs, as triggered by output spikes (‘reverse correlations’), shows that typical
spikes do indeed result from deterministic combinations of presynaptic events. In particular, a typical output spike requires that there be
about 60% more EPSPs than average, and about 90% fewer IPSPs than average, within the preceding millisecond. The fast timescale of
this deterministic fluctuation detection can be understood, in part, by considering the inhibitory conductance as creating an effectively fast
membrane time-constant (see equation 2 in the text). Although this simulation used only random input events, such a model is capable of
making the fine temporal discriminations necessary to implement a spike code having orders of magnitude more information-transmitting
capacity than the traditional, noisy, average-rate codes.

that it is insensiive to the fine temporal structure Cortical cell models that fire realistically (i.e. irregularly),
of its inputs — which T believe is erroncous. The crror however, scem to do so becanse of their sensitivity to pre-
is simple, but has strong implications for understanding cisely timed inputs (in some extreme cases, such as the
cortical physiology and function. ‘hand-tuned’ model discussed below, the ‘neuron’ can

completely gate its firing in response to sub-millisecond
discriminations of its input). So the crucial questions
are whether cortical neurons in fact make use of that
temporal sensitivity — and its potentially huge payoft in
efficiency — and what kind of experiments are needed
to discover it or rule it out.

Brains process information, and information transmis-
sion is as quantifiable a measure of performance as mus-
cular strength or metabolic energy efficiency. Therefore,
it is logical to assume that neurons use their spikes as a
means of efliciently transmitting information, While we
do not yet understand their spike code (i.e. the signifi-
cance of spiking time, correlations, and rates), it has long
been recognized that trains of irregular spikes can carry
vastly more information in their precise spike times than

in their noisy average rates [2,3]. This ‘efficient’ cod- Coincidence detection with ‘balanced inhibition’
ing strategy has not been much explored, partly because

there is very little evidence for precisely tuned action po- Shadlen and Newsome's balanced inhibition model (see
tentials, and partly because of the assumprion that corti- [1]) postulates that strong inhibition causes a cortical
cal neurons are not sensitive enough to use precise spike neuron’s membrane potential ro fluctuate randomly. This

times. mechanism might help account for the observed firing
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Fig. 2. Weakly active dendrites confer strong millisecond-level sensitivity on a reconstructed pyramidal cell model. (a) A layer 5 pyramidal
cell, as reconstructed from cat visual cortex by Douglas and Martin (see [6]), simulated numerically. (b) If two co-localized excitatory inputs
arrive two milliseconds apart, in the middle of a thin basal dendrite, they have very strong local depolarizations and fast local decays, but
nonetheless produce realistically weak somatic EPSPs, which summate roughly linearly and decay with the 7., of 20ms. But if they arrive in
coincidence, they fire a small dendritic spike that produces a threefold larger somatic depolarization. (c) A co-localized inhibitory synapse
can gate such effects with fine temporal resolution. If the IPSP arrives only one millisecond after the coincident EPSPs, the dendritic spike will
fire and reach the soma somewhat attenuated. But if the inhibition is coincident with the EPSPs, the dendrite will not fire, and the net effect on
the soma will be negative. Such strong, transient, and highly localized non-linearities result naturally from even weak spiking conductances
located in thin dendrites, but, because such non-linearities cannot occur in the popular single-compartment cell models, cortical neurons”

potential for precise, high-bandwidth information transmission is often overlooked.

irregularity in cortical neurons [4]. But they claim in ad-
dition that “the timing of postsynaptic spikes is random
and no longer reflects the timing of presynaptic events”
[1]. A simple demonstration, using their own model and
parameters (see Fig. 1c of [1]), shows that the model’s
spikes do in fact result from its deterministic responses
to input fluctuations on a sub-millisecond timescale.

Figure 1 describes a model of a single compartment,
leaky-integrator cell that receives 300 streams of 100 Hz
random (Poisson), instantaneous, excitatory postsynap-
tic potentials (EPSPs) with 0.6 mV amplitude, and 150
streams of random inhibitory postsynaptic potentials (IP-
SPs) with 1.2mV peak (0.9mV mean) amplitude and
reversal potential equal to the membrane resting poten-
tial, Eiph =Erese =—70mV. The cell fires an action poten-
tial upon reaching the firing threshold of —55mV, and
instantly resets to E,.q. Synaptic potentials and mem-
brane decay are calculated at 0.1 ms intervals (finer than
Shadlen and Newsome used), leading to an output fir-
ing rate of about 70 Hz (which is a bit slower than they
observed).

With such a model, one can perform an additional ‘ex-
periment’ that is not possible in a real neuron: that
is, compiling a running average (cross-correlogram) of
all EPSPs and IPSPs as triggered by the output spikes
[5]. Those cross-correlograms have baseline values of
3.0 and 1.5 impulses per time bin, respectively, repre-
senting the average rate of synaptic inputs (Fig. 1b,c).
But they also show prominent features near the trigger—
ing spikes at t=0 (Fig. 1b,c). The EPSP average shows a
narrow peak of amplitude 5.0 (EPSPs/0.1ms), indicat-
ing that in the millisecond before a typical output spike,
the neuron receives 65% more EPSPs than average. The
prominent dip in the IPSP average shows that a typical
output spike is also preceded by a transient reduction in
inhibition of nearly 90%.

This result accords with common sense because in this
model, the input fluctuates randomly, and the cell tends
to fire when it receives those few random fluctuations
(extra excitation and missing inhibition), which drive the
membrane voltage towards threshold. As those fluctua-
tions are the simultaneous (albeit random) coincidences
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and anti-coincidences of input from many different cells,
the cell performs a kind of statistical coincidence detec-
tion on its inputs; therefore, the output spikes do indeed
reflect the timing of presynaptic events.

This behavior can also be understood in terms of mem-
brane time-constants (Ty). Although the model’s as-
signed T, is 20ms, the barrage of inhibition mimicks
a shorter effective time constant Teg [6]. A rough esti-
mate of that shorter value, equating the mean inhibitory

influence  (dV/dt=—0.9 mV/IPSP x 15 000 IPSPs/sec)
and the mean inhibitory driving potential
(AV = (Vi) —Ejpp = 9mV) gives:
dv AV
Ses ()
t Teff
Tef = 0.67 ms, (2)

a factor of 30 smaller than T,,. (T g has about the same

’ ’ T ’ ©igure 1b,c, although
the actual relation between peak-width and time-con-
stant is complex [7].)

This result also accords with the proposal that plausible
models that produce irregular spikes do so by discrimi-
nating fluctuations (or coincidences in their input) at a
timescale much finer than the typical interspike interval
[4]. If this proves true, then it implies that irregularly
firing cortical neurons are capable of transmitting pre-
cise temporal codes. For example, models with strong
outward currents — such as strong leaks, voltage-gated
K+ currents, or inhibition — meet these twin criteria of
irregular firing and fluctuation sensitivity, as do models
with strongly correlated volleys of EPSPs. (Models with
weak outward currents do not violate the rule, because
they fire quite regularly.) A possible exception could be
a model with unconstrained random-walk membrane
fluctuations, but such a inodel has an infinitely negative
inhibitory reversal potential, an infinitely long memory,
and a membrane voltage that drops well below physio-
logical ranges.

A hand-tuned model

If the balanced inhibition cell model — exhibited to be
so insensitive to EPSP timing (i.e. a poor coincidence
detector) — nonetheless performs so sensitively, how
much better might a model perform whose parame-
ters were deliberately ‘hand-tuned’ to give it temporal
sensitivity?

The layer 5 pyramidal cell (Fig. 2a), whose morphology
was reconstructed from cat visual cortex by Douglas and
Martin (see [6]), was simulated (using NEURON |[8])
with a T, of 20ms and with weak Hodgkin—Huxley
conductances in all dendrites: that is, sodium conduc-
tance gnj, =0.006 S cm2, about one standard deviation
above the mean 0.004 S cm=2 reported in neonatal rat

apical dendrites [9], was barely sufficient to sustain local
regenerative events in a basal dendrite; further param-
eters, such as g =0.00188cm2 and time constants,
were chosen to give realistic action potentials. Action
potentials were initiated in an axon initial segment
(1.0x50 um [10]), which had extremely strong spik-
ing conductances (gn, =1.08 em=2; g =0.5S cm—2).
Excitatory and inhibitory synapses were placed on the
center of each thin, terminal basal dendritic branch
(typically about 100 um distal from the soma), with
physiological reversal potentials (0 mV and =70 mV), and
conductance durations (tpeak of 0.24 ms and 0.4 ms) and
amplitudes (gpeak of 1.5nS and 10nS), chosen to pro-
duce somatic rise-times and potentials consistent with
conservative published results ([11,12]; also [13]) (see
the lower half of Fig. 2b). Thus, the simulation’s basic
ingredients were consistent with accepted physiology.

Nonetheless, these synapses had a remarkable property:
their local dendritic depolarizations were tenfold faster
and a hundredfold stronger locally than as measured at
the soma [14,15]. Therefore, two co-localized EPSPs —
in precise coincidence — could fire a small dendritic
spike (Fig. 2b), which in turn caused a somatic depo-
larization threefold stronger than if the same synaptic
events were separated in time by only two milliseconds.
Furthermore, a co-localized IPSP could completely can-
cel such a depolarization if coincident with the EPSPs,
but would have much less effect if occurring just a mil-
lisecond later (Fig. 2c), a precision also seen in models of
excitable dendritic spines [16]. This model (Fig. 2) was
similar to the balanced inhibition model of Shadlen and
Newsome in that it gives inhibition a central role and
strong magnitude (capable of roughly cancelling excita-
tion). However, this model is also multi-compartmental,
which is both more realistic and more computationally
powerful than single-compartment models like Shadlen
and Newsome’s (see [17,18]), and is much better suited
to performing fast temporal discriminations [14].

Although the parameters used in this model were conser-
vative, the choice of which synapses to fire, and when,
was highly artificial. Co-localized synapses at the cen-
ter of basal branches always fired as part of a ‘synaptic
triplet’, which is the precise pattern shown in Fig. 3a:
two coincident EPSPs followed 1 ms later by an IPSP.
Triplets occurred completely randomly and indepen-
dently at 25 Hz on each dendritic branch (Fig. 3a). With
this local ordering of synaptic events, the neuron’s axon
fired at a robust and realistic 55 Hz.

Whether such precise and specific connections actually
exist in the cortex awaits a better understanding of
synaptic formation and selectivity. This particular ar-
rangement was chosen to highlight a specific sensitiv-
ity to the precise timing of the cell’s inputs: when each
triplet was perturbed by adding a slight gaussian timing
jitter (of standard deviation O) to its EPSPs and [PSP,
the dendritic spikes were on average weaker or non-
existent, so that the cell as a whole fired more slowly
(Fig. 3b). Even though the only independent variation



Commentary: Simple codes versus efficient codes Softky 243

0800 10 11
o Jivero(msy

0003 02 Os‘@ 06 : 07

. ==

© 1995 Current Opinion in Neurohiology

Fig. 3. A hand-tuned (physiologically reasonable) cell model can be extremely sensitive to the temporal structure of its inputs. (a) The model
in Figure 2 received its input as optimally timed triplets of two coincident EPSPs and a subsequent IPSP (as simulated in Fig. 2¢), with
triplets recurring randomly at 25 Hz on each basal dendritic branch, with no correlations across branches. The cell’s axon fired at about
55Hz in response to this input. (b) If only a slight gaussian timing jitter (o=0.5ms) was added to the original synaptic times (thin pulses)
to produce perturbed triplets (thick pulses), the cell fired much more slowly. In neither (a) nor (b) does the somatic voltage suggest the
strong and sensitive non-linear interactions occurring inside the thin distal dendrites. (c) A plot of the cell’s output firing rate against jitter
magnitude shows that such a model has sub-millisecond sensitivity to precise input firing patterns and times. Although such delicate regimes of
sensitivity may not dominate the range of physiologically acceptable models, they deserve special attention because they potentially represent
information-transmission efficiencies orders of magnitude larger than the coarse, slow, noisy regimes usually considered,

was the timing noise of individual events, the cell was
quite sensitive to that noise: for example, 0=0.25ms
reduced the output rate by half, and 0 =0.8ms shut off
firing entirely (Fig. 3c).

There was little indication in the somatic voltage trace
(Fig. 3b,c) of the very strong and transient dendritic sig-
nals that gave rise to this remarkable sensitivity. Because
such temporally precise mechanisms can be nearly ‘in-
visible’ to somatic recording electrodes, great care will
be needed in searching for them experimentally.

There are many cellular properties not included in this
model, which could have affected these results: for ex-
ample, slow currents, due to Ca2* or tonic NMDA
mediated conductances, would probably have decreased

/

the model’s temporal sensitivity. Other properties might
have made the cell even more sensitive, such as strong in-
hibition of the axon initial segment [19] and soma [20],
fast Ca2*- and voltage-gated K+ currents, and correla-
tions in synaptic input across dendrites and across time.

In any case, this model — like any simulation of a neo-
cortical cell — is not ‘realistic’, because we do not yet
know realistic input patterns or the detailed intracellular
and synaptic properties of mature neurons in vivo (and es-
pecially of the thin dendrites where most input arrives).
Nor do the familiar concepts borrowed from passive
cable theory (time constant, electrotonic length, com-
pactness) adequately describe the intricate non-linearities
occurring in active dendrites at fast timescales [14].
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Simplicity versus efficiency

The hand-tuned model is remarkably sensitive to input
timing, but it is manifestly artificial as it was specifically
designed to show this sensitivity. What is the point of
hand-picking parameters to demonstrate a model unsup-
ported by direct experimental evidence? Because evo-
lution sometimes works the same way, picking out and
building upon useful parameter regimes against tremen-

dous odds.

Hand-tuning a model for temporal precision shows a
bias, namely that the apparent randommness of spiking
and our ignorance of in wvivo cellular details mask an
efficient and specific structure of information process-
ing. This modelling approach postulates and explores
such structure, even when it appears peculiar and im-
plausible. But the more popular style of modelling —
that is, choosing “average’ parameters from widely vary-
ing estimates, and only evaluating a few simple responses
to a few simple stimuli — also incorporates a hidden bias:
that cortical neurons are (relatively) simple, and that we
already understand their basic functions.

These are two conflicting approaches to model-building
with insufficient data: the hypothesis of efficiency and
the hypothesis of simplicity. Broadly speaking, efficiency
assurnes that the forces of evolution will have shaped
the operating regimes — however unlikely they may
seem — sO as to optimize an organism’ performance.
Examples outside the brain abound: the aerodynamic
efficiency of soaring birds, the quantumn efficiency of
photoreceptors [21], the nanosecond acuity of echolo-
cating bats [22].

Simplicity, on the other hand, is the traditional scien-
tific hypothesis, as embodied in Occam’s Razor: one
chooses the most simple explanations consistent with the
observations. A simple model will only seek to explain
existing data with a minimum number of assumptions,
and will contain no assumptions about the significance
of parameters or mechanisms that we do not understand.

Not only is the hypothesis of efficiency strictly unscien-
tific, but it presents two special problems when applied
to understanding how information is efliciently transmit-
ted in the brain. The first is that in the special case of
computing and processing information, efficiency is the
opposite of simplicity. Just as a computer’s power depends
on the number of its possible internal states (memory)
and its clock speed, so the potential power of a single
cortical neuron depends on its structural complexity (the
number of functionally independent compartments) and
its temporal resolution. Crude estimates suggest that a
pulse code of irregular spikes is a hundredfold more ef-
ficient than an analog rate code [3,23], because the rate

code’s noise serves as the pulse code’s information! (e.g.
the irregular pulses inside a computer carry more infor-
mation than the irregular pulses from a Geiger counter).
Furthermore, transients at that fast single-spike timescale
do not propagate very far inside a branched membrane,
so a neuron’s many different dendrites are nearly de-cou-
pled from one another [14]. This combination of fast
and highly localized computation gives a single neo-
cortical neuron potentially three orders of magnitude
more overall computing power than the traditional sim-
ple, slow, noisy models. In general, the more complicated
the neuron, the greater its potential efficiency?.

The second problem with the efficiency hypothesis is
that, by favoring electro-chemical events that are very
tightly localized in space and time, it ascribes to na

ture a powerful incentive to use the very properties that
are beyo‘nd the resolution of our instruments. For exam-
ple, synaptic amplitude excursions are strongest, briefest,
most numerous, and most localized in the thinnest ter-
minal dendrites, and yet, these are precisely the locarions
that are most difficult even to see using a light micro-
scope, much less measure directly and unintrusively at
high frequencies. And the sensitivity of those tiny den-
drites to precise input patterns depends very strongly on
their fastest electrical non-linearities, such as Na* spiking
conductances [14], which are now only being measured
in the much wider apical dendrites, in brain slices [9].

As a benchmark, consider the task of investigating a
better-understood kind of information processor: a sil
icon chip. We already know that for reasons of space,
power consumption, and speed, the best computer chips
contain the most densely packed, fastest, tiniest transis-
tors (0.5-2 pm, a bit larger than thin dendrites). Could
we probe them in the same way we probe brains? Not by
‘electrophysiology’ — touching the chip with an exter-
nal electrode — for the two reasons outlined above. First,
the electrode is bigger than a typical transistor or inter-
transistor distance, so it would be hard to record from
just one, In addition, a single rransistor, designed only
to drive its small fellows at high speeds, cannot in addi-
tion drive the much larger capacitance of the probe, as
the probe would load and disrupt the circuit under study.
Because of these limitations, the simplest state-of-the-art
method for bringing a chip’s single-transistor output to
the lab bench requires first designing a large, dedicated
amplifier circuit for each transistor of interest, then fab-
ricating from scratch a new chip with the transistor-am-
plifier pairs, and finally measuring the amplifier's output
during circuit operation (see |26] and references therein).
The clumsiness of this process illustrates the difficulty of
probing, from the ourside, the inner workings of an ef-
ficient information processor.

Tinformation efficiency might be measured in bits-per-second, bits-per-spike, or bits-per-calorie. The estimate only requires knowing the
strengths, timescales, and probabilities of the signal and noise in the code; it does not require knowing how the brain uses information.
250me efficiency-related measures have already been applied to perceptual processing, such as ‘info-max’ [24] and redundancy
reduction [25]. But both these measures assume average-rate coding rather than precise temporal coding,



Commentary: Simple codes versus efficient codes Softky

Existing evidence, and the lack of it

Possible experimental tests

A serious short-coming in the hypothesis that living
brains transmit information using single spikes is a lack
of experimental evidence. There is no evidence that
single spikes in visual cortex have any precise timing
in relation to their input stimuli (J Heller et al., per-
sonal communication); even much weaker stimulus-re-
lated temporal modulation at much slower timescales is
in dispute [27,28]. But unlike inputs to simple stimulus-
driven transducers, most inputs to a cortical neuron do
not come directly from the ‘stimulus’, but rather from
other cortical neurons. Furthermore, cortical neurons
may use their spikes in ways beyond simply encoding
the experimental stimulus.

When both the input source and the general function
of some neuron are evident, as they are in signal trans-
duction — such as in the fly eye [21] or the cricket cer-
cal system [29,30] — then information-theoretic analyses
relating spike trains to stimuli give a fairly complete de-
scription of the neuron’s capabilities: such neurons can
transmit up to 3—4 bits of information per spike about
a simple stimulus, such as local velocity or air move-
ment. But a realistic ‘stimulus’ for mammalian cortex is
not an air puff, but rather a complex situation involving
on-going patterns of full-field vision and other modali-
ties. Likewise, the ‘output’ of cortex may be a complex
behavior including gesture, locomotion or vocalization.
The fact that some cortical neurons do respond to sim-
ple, localized stimuli does not circumscribe their role in
interpreting the much richer and more complex inputs
that brains encounter outside the lab.

That process of interpretation, or perception, may in-
volve interrelations among parts of the stimulus. And
those interrelations might be coded as temporal fluctua-
tions that are independent of the stimulus itself. The task
could be visual perception by synchronizing rate-fluctu-
ations among neurons [31,32], figure—ground separation
by the phase of neural oscillators [33], visual attention
modulated by oscillations [34-36], or ‘binding’ by pre-
serving the precise spike times of individual inputs [37].
In all these cases, there is both a need for extra precision
in cortical temporal discrimination and a reason that such
responses may seem like ‘noise’, that is, signals unrelated
to the experimental stimulus.

In most of these cases, the temporal signal 1s multiplexed
into an average-rate signal carrying information comple-
mentary to it. A cell like Shadlen and Newsome’s [1], for
instance, might convey slowly changing stimulus prop-
erties by its averaging firing rate, even while its spike
times carried additional information relating the stim-
ulus to other parts of the environment. Using redun-
dant, parallel pathways might safely allow imperfections
in any single cell’s response: temporal precision in the
network does not necessarily require the faithful trans-
mission of every pulse to and from every neuron [38]
(after all, synaptic failure [39], and even neuronal death,
are common occurrences in functioning brains).

In the search for temporal precision, the unexpected sub-
millisecond precision of Shadlen and Newsome’s model
provides an important lesson: what we find depends on
what we look for. For instance, the arguments above sug-
gest that precision will probably not be found in a single
neuron’s post-stimulus time histogram, but may appear
only in the correlations between selected pairs or groups
of neurons [38,40].

One experimental approach may be easy to implement:
recording, storing, and publishing intracellular and extra-
cellular data with as little low-pass filtering and smooth-
ing as possible, so that signals at fast timescales are at least
available for scrutiny by others.

Finding highly precise interspike interval patterns would
strongly support precise-coding models [41,42], but such
studies often have problems in constructing a null hypo-
thesis — that is, the expected number of chance repeti-
tions in a data set — relative to which the discovered
pattern repetitions may or may not be significant (R
Lestienne, Soc Neurosci Abstr 1994, 20:22).

Multi-electrode studies might reveal whether precise co-
incidences of spikes exist in primate cortex, as they do in
cat [43-45]. Presently, single electrodes using thresholds
or template-matching spike-sorters cannot record two
exactly coincident action potentials, because the individ-
ual extracellular potentials are superimposed. But given
good records, a total absence of millisecond-level coinci-
dences would be hard to reconcile with the coincidence-
detecting hypothesis.

Intracellular records of the thinnest basal and apical den-
drites might resolve whether they contain the strong, fast
events proposed here. Extracellular patch records (‘cell
attached’, i.e. with unruptured membranes) might pre-
vent the recording pipette from capacitively loading the
tiny dendrite and eliminating the very effect it seeks to
measure.

A better but less practical measurement would look for
the scenario posed in Figure 2: whether two co-local-
ized and coincident EPSPs on thin dendrites produce a
somatic effect greater than the sum of their separate con-
tributions. (At present, even a single such synaptic site is
only visible using electron microscopy; finding two such
synapses nearby on the same dendritic branch, and then
finding and impaling both presynaptic neurons, is nearly
impossible.)

Such tests would be more believable (but difficult) on
cells with the adult complement of dendrites and con-
ductances [46], and in awake animals, where the firing
irregularity, synaptic background activity [6] and action
potential repolarization [47] best match their true oper-
ating conditions.

An ideal test of the hypothesis that spike times are im-
portant would be to perturb all latencies in some area
of living cortex by a millisecond or so, while observing
whether behavior is affected. This might in principle be
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done by changing the conduction speed of the axons in
the white matter (through temperature or chemistry).

Conclusions

So far, every cortical cell model that generates realisti-
cally irregular spikes, including Shadlen and Newsome’s
balanced inhibition model, is also capable of discriminat-

ing its input on a fast timescale. A hand-tuned model of

a reconstructed pyramidal cell, containing physiological
conductances, is even more sensitive, capable of entirely
shutting off its firing in response to sub-millisecond jitter
in its synaptic arrival times. But its crucial properties are
contained in its thinnest dendrites, and their effects are
virtually invisible in the somatic voltage trace. Thus, the
very properties that could make a neuron most sensitive,
may also be the most difficule to measure.

Such temporal precision makes cortical neurons at least
capable of implementing codes that use precise spike
times. Such codes can be over two orders of mag-
nitude more efficient at information transmission than
the traditional, noisy average-rate codes. So a search for
temporally precise spike codes could be motivated by the
observation that evolution, having designed such won-
ders as flight, photosynthesis and echolocation, might
also have designed neurons to process information ef-
ficiently. Although the efficiency hypothesis is only a
hypothesis — in that it proves nothing, and cannot
substitute for real data — it can nevertheless point the
way for future experiments, so that we do not make the
crror of missing an important phenomenon just because
we have not looked for it.
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